FPT Industrial offers superior technology and outstanding advantages ## Diesel engines for Power Generation application | | Redit. Charles to the | Hout the the things of the state stat | | Digital | STAN
POWER OUT | | EMISTONS | PRIME
POWER OUTPUT [kWm] | | |-------------|--|--|---------|----------|-------------------|-----------------|----------|-----------------------------|--| | HODEL | White things, | MECH | DISTRES | 1500 RPM | 1800 RPM | EM1. | 1500 RPM | 1800 RPM | | | 1MA 00082 | 3L/NA | М | 2,9 | 31 | 34 | UR | 28 | 31 | | | F32 AM1A | 4L / NA | М | 3,2 | 31,5 | _ | UR ¹ | 29 | _ | | | F32 SM1A | 4L / TC | М | 3,2 | 41,5 | - | UR ¹ | 38 | - | | | F32 TM1A | 4L / TAA | М | 3,2 | 51,5 | - | UR ¹ | 47 | - | | | F32 SM1F | 4L / TC / I-EGR | М | 3,2 | 31,5 | _ | Stage IIIA | 29 | | | | F32 SM1X | 4L / TC / I-EGR | М | 3,2 | _ | 46,5 | Tier 3 | - | 42 | | | F32 TM1X | 4L / TAA / I-EGR | М | 3,2 | - | 56,5 | Tier 3 | - | 52 | | | N45 AM2 | 4L / NA | М | 4,5 | 50 | - | UR | 45 | - | | | N45 SM3 | 4L / TC | М | 4,5 | 81 | 87 | UR | 73 | 79 | | | N45 TM3 | 4L / TAA | М | 4,5 | 118 | _ | UR | 107 | - | | | N45 AM1A | 4L / NA | М | 4,5 | 46 | _ | UR ¹ | 42 | _ | | | N45 SM1A | 4L / TC | М | 4,5 | 59 | 65 | UR ¹ | 53 | 59 | | | N45 SM2A | 4L / TC | М | 4,5 | 73 | _ | UR ¹ | 66 | _ | | | N45 TM1A | 4L / TAA | М | 4,5 | 85 | 95 | UR ¹ | 78 | 87 | | | N45 TM2A | 4L / TAA | М | 4,5 | 96 | 107 | UR ¹ | 88 | 98 | | | N45 SM1F | 4L / TC / I-EGR | М | 4,5 | 60 | _ | Stage IIIA | 55 | - | | | N45 TE1F | 4L / TAA / I-EGR | ECR | 4,5 | 80 | _ | Stage IIIA | 73 | - | | | N45 TE2F | 4L / TAA / I-EGR | ECR | 4,5 | 98 | _ | Stage IIIA | 89 | _ | | | N45 SM1X | 4L / TC / I-EGR | М | 4,5 | _ | 57 | Tier 3 | - | 53 | | | N45 SM2X | 4L / TC / I-EGR | М | 4,5 | - | 67 | Tier 3 | - | 61 | | | N45 TM2X | 4L / TAA / I-EGR | М | 4,5 | _ | 95 | Tier 3 | - | 87 | | | N67 SM1 | 6L / TC | М | 6,7 | 121 | 138 | UR | 110 | 125 | | | N67 TM4 | 6L / TAA | М | 6,7 | 165 | _ | UR | 150 | | | | N67 TM7 | 6L / TAA | М | 6,7 | 194 | _ | UR | 176 | - | | | N67 250kVA* | 6L / TAA | ECR | 6,7 | 234 | 246 | UR | 212 | 221 | | | N67 TM2A | 6L / TAA | М | 6,7 | 126 | 141 | UR ¹ | 114 | 128 | | | N67 TM3A | 6L / TAA | М | 6,7 | 152 | 165 | UR ¹ | 138 | 149 | | | N67 TE2A | 6L / TAA | ECR | 6,7 | 193 | 215 | UR ¹ | 175 | 195 | | | N67 TM1F | 6L / TAA / I-EGR | М | 6,7 | 125 | _ | Stage IIIA | 114 | _ | | | N67 TE1F | 6L / TAA / I-EGR | ECR | 6,7 | 145 | - | Stage IIIA | 132 | _ | | | N67 TE2F | 6L / TAA / I-EGR | ECR | 6,7 | 165 | _ | Stage IIIA | 150 | _ | | | N67 TE3F | 6L / TAA / I-EGR | ECR | 6,7 | 194 | - | Stage IIIA | 175 | | | | N67 TM1X | 6L / TAA / I-EGR | М | 6,7 | - | 141 | Tier 3 | - | 128 | | | N67 TE1X | 6L / TAA / I-EGR | ECR | 6,7 | - | 165 | Tier 3 | - | 150 | | | N67 TE2X | 6L / TAA / I-EGR | ECR | 6,7 | - | 200 | Tier 3 | - | 182 | | | | Hotel Light and Active | | tight the series and the series the series of o | | LACEMENT | STAND-BY POWER OUTPUT [kWm] | | EMISTONS | PRIME
POWER OUTPUT [kWm] | | |-----------|------------------------|------|--|----------|-----------------|-----------------------------|----------|----------|-----------------------------|--| | MODEL | ARR HAIS | MECI | DISTERS | 1500 RPM | 1800 RPM | EMI. | 1500 RPM | 1800 RPM | | | | C87 TE3 | 6L / TAA | ECR | 8,7 | 249 | 271 | UR | 229 | 249 | | | | C87 TE4 | 6L / TAA | ECR | 8,7 | 299 | 333 | UR | 275 | 306 | | | | C87 TE1D | 6L / TAA | ECR | 8,7 | 256 | 280 | UR¹/Tier 3 | 232 | 254 | | | | C87 TE1F | 6L / TAA | ECR | 8,7 | 195 | - | Stage IIIA | 177 | - | | | | C87 TE3F | 6L / TAA | ECR | 8,7 | 256 | _ | Stage IIIA | 232 | _ | | | | C87 TE4F* | 6L / TAA / I-EGR | ECR | 8,7 | 278 | 316 | Stage IIIA/Tier 3 | 250 | 284 | | | | C10 TE1D | 6L / TAA | EUI | 10,3 | 290 | 317 | UR¹/Tier 3 | 264 | 287 | | | | C10 TE1F | 6L / TAA / I-EGR |
EUI | 10,3 | 290 | - | Stage IIIA | 263 | - | | | | CR13 TE6W | 6L / TAA | ECR | 12,9 | 414 | 454 | UR | 371 | 400 | | | | CR13 TE7W | 6L / TAA | ECR | 12,9 | 459 | 474 | UR | 425 | 428 | | | | C13 TE2A | 6L / TAA | EUI | 12,9 | 330 | 360 | UR ¹ | 300 | 327 | | | | C13 TE3A | 6L / TAA | EUI | 12,9 | 387 | 398 | UR ¹ | 352 | 360 | | | | C13 TE3X | 6L / TAA | EUI | 12,9 | _ | 371 | Tier 3 | _ | 337 | | | | C13 TE1F | 6L / TAA / I-EGR | EUI | 12,9 | 327 | - | Stage IIIA | 296 | - | | | | C13 TE2F | 6L / TAA / I-EGR | EUI | 12,9 | 377 | _ | Stage IIIA | 342 | _ | | | | C13 TE2F | 6L / TAA / I-EGR | EUI | 12,9 | 377 | _ | Stage IIIA | 342 | - | | | | CR16 TE1W | 6L / TAA | ECR | 15,9 | 557 | 578 | UR | 505 | 523 | | | ARRANGEMENT L In line EXHAUST SYSTEM I-EGR Internal Exhaust Gas Recirculation UR Unregulated Previously EU Stage II Available from 2nd Half 2017 NA Naturally Aspirated TAA Turbocharged Aftercooler TC Turbocharged INJECTION SYSTEM M Mechanical ECR Electronic Common Rail EUI Electronic Unit Injector # THE ENERGY OF INNOVATION Developed with customer needs in mind, FPT Industrial's S8000 G-Drive range answers demands for reduced complexity, ideal for remote locations and ensures high power output levels at a lower cost of ownership. Engineered to FPT's renowned reliability levels these engines also feature best in class maintenance intervals. The S8000 G-Drive is designed for all emergency and prime power applications that do not require compliance to emission regulation. # DIESEL GENERATOR DRIVE FOR POWER GENERATION APPLICATION | Δ. | CLINER HERE | TONSTEEN | RIACHENT | STAN
POWER OUT | | . cons | PRI
POWER OUT | | |-----------|--|----------|----------|-------------------|----------|--------|------------------|----------| | HODE | R. R. K. | MEC | DISTRIC | 1500 RPM | 1800 RPM | EMISS | 1500 RPM | 1800 RPM | | S8000 AM1 | 3L/NA | М | 2,9 | 31 | 34 | UR | 28 | 33 | #### LEGEND ARRANGEMENT L In line INJECTION SYSTEM M Mechanical UR Unregulated AIR INTAKE NA Naturally Aspirated ## Features | PERFORMANCE | Class G2 of ISO 8528 standard certification of excellent performance related to load acceptance. | |--|---| | MECHANICAL INJECTION SYSTEM WITH ELECTRONIC GOVERNOR | Based on simple and proven mechanical rotary pump, S8000 engine has a direct fuel injection system which is state-of-the-art for accurate fuel delivery. Electronic speed governor delivered as standard in order to be best in class in load acceptance and frequency stability. | | ENGINE DESIGN | Compact 3 Cylinder in-line with big unit displacement and long stroke. | | SPECIFIC FEATURES | Lean lay-out; starting temperature without auxiliaries down to -5° (with heat greater down to -12°). Tropicalized radiator delivered as standard in order to work in harsh conditions (up to 65°). | | AIR HANDLING | S8000 engine is available in naturally aspirated version with cooling package rack mounted on engine (non fix on frame is required). | | 600H OIL INTERVAL CHANGE | Optimum engine design in terms of mechanical clearances, piston rings, engine oil system calculation and optimized engine structure to limit cylinder liners deformation. | | COMPONENT INTEGRATION | Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Oil and water pumps are fully integrated in the block. | | DUAL SPEED MODE | Possibility to switch from 1.500 rpm to 1.800 rpm (50Hz/60Hz). | - ✓ 100% TRANTRANSIENT LOAD RESPONSI FOR ANY STAND-BY AND PRIME APPLICATION - SIMPLE AND EASY TO INSTALL SOLUTION PICK-UP FREE - ✓ COMPACT PACKAGING AND INSTALLATION FOOTPRINT - HIGH PERFORMANCE GUARANTEED IN ALL CONDITIONS - SIMPLE AND EASY TO INSTALL SOLUTION - REDUCED MAINTENANCE NEEDS AND OPERATING COST - ✓ LEAKAGE PREVENTION - PRODUCT FLEXIBILITY BASED ON MARKET REQUEST HE FS SERIE ## The F₅ Series Featured by customer oriented design, the F₅ Series stands out for low operating costs and extremely easy maintenance thanks to single side servicing. These benefits are combined with excellent performance, which allows the engines to be used for the most demanding missions (high engine inclination, cold starting at temperatures down to -25° C). | Α. | tillet tilte | METONSSER | DEFERENCE | STAN
POWER OUT | | EMSSONS | PRIME
POWER OUTPUT [kWm] | | |----------|------------------|-------------|-----------|-------------------|----------|------------------|-----------------------------|----------| | MODEL | A HE HIM | MEC. Diffes | DISTRES | 1500 RPM | 1800 RPM | f _W , | 1500 RPM | 1800 RPM | | F32 AM1A | 4L / NA | М | 3,2 | 31,5 | - | UR ¹ | 29 | _ | | F32 SM1A | 4L / TC | М | 3,2 | 41,5 | - | UR ¹ | 38 | - | | F32 TM1A | 4L / TAA | М | 3,2 | 51,5 | - | UR ¹ | 47 | - | | F32 SM1F | 4L / TC / I-EGR | М | 3,2 | 31,5 | - | Stage IIIA | 29 | | | F32 SM1X | 4L / TC / I-EGR | М | 3,2 | _ | 46,5 | Tier 3 | - | 42 | | F32 TM1X | 4L / TAA / I-EGR | М | 3,2 | _ | 56,5 | Tier 3 | - | 52 | ARRANGEMENT L In line AIR INTAKE NA Naturally Aspirated TAA Turbocharged Aftercooler Turbocharged EXHAUST SYSTEM I-EGR Internal Exhaust Gas Recirculation INJECTION SYSTEM M Mechanical UR Unregulated UR¹ Previously EU Stage II ## Features | PERFORMANCE | Class G2 of ISO 8528 standard certification of excellent performance related to load acceptance. | |----------------------------------|---| | MECHANICAL INJECTION SYSTEM | Based on simple and proven mechanical rotary pump, F ₅ engines have a direct fuel injection system which is state-of-the-art for accurate fuel delivery. The mechanical pump is the best trade-off between performance and easy engine installation. | | ENGINE DESIGN | Camshaft in crankcase, suspended oil pan, balancer counterweights incorporated in crankshaft webs. | | SPECIFIC FEATURES | Lean layout; starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR, VGT or electronics. | | AIR HANDLING | F ₅ Series engines are available in naturally aspirated, turbocharged and turbocharged with aftercooler versions, in order to reach the highest engine performance in terms of load acceptance and fuel consumption. These features allow final users to optimize their engine installation & final genset performance. | | 600H OIL INTERVAL CHANGE | Optimum engine design in terms of mechanical clearances, piston rings, engine oil system calculation and optimized engine structure to limit cylinder liners deformation. | | COMPONENT INTEGRATION | Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps with by-pass are fully integrated in the block. | | SERVICEABILITY & MAINTAINABILITY | One side (left) engine maintenance layout and worldwide service network. | | OPTION LIST | Options for electronic speed governor; hot part guards, water jacket heater, alarm senders, oil drain systems, front radiator guard. | | | | - ✓ EXCELLENT TRANSIENT LOAD RESPONSI FOR SEVERAL POWER GENERATION APPLICATIONS - ✓ SIMPLE AND EASY TO INSTALL SOLUTION CONSISTENT WITH STANDARD AND ALTERNATIVE FUELS - ✓ VIBRATION & NOISE REDUCTION - HIGH PERFORMANCE GUARANTEED IN ALL CONDITIONS - WITH THE SHORTEST LOAD RESPONSE TIME - ✓ REDUCED MAINTENANCE NEEDS AND OPERATING COST - ✓ LEAKAGE PREVENTION - ✓ QUICK SERVICE SUPPORT AND EASY MAINTENANCE - CUSTOMER ORIENTATION AND SPECIFIC ENGINE ARCHITECTURE BASED ON APPLICATION TYPE ## The NEF Series Developed to satisfy the most demanding customer requirements, the **NEF Series** is the evidence of FPT Industrial technological excellence. Available in 4 and 6 cylinders, with mechanical or Common Rail injection system, the **NEF Series** stands out for reliability and reduced fuel consumption. | | elikak kitak setat | MECTONSTEP | District the state of | STAN
POWER OUT | | EMESTONS | | PRIME
POWER OUTPUT [kWm] | | |----------|-----------------------|--------------------
--|-------------------|----------|-----------------|----------|-----------------------------|--| | HODEL | MODEL WEST HEIR THEIR | ST INECTIC DISPLES | DISTRIE | 1500 RPM | 1800 RPM | EM1. | 1500 RPM | 1800 RPM | | | N45 AM2 | 4L / NA | М | 4,5 | 50 | _ | UR | 45 | _ | | | N45 SM3 | 4L / TC | М | 4,5 | 81 | 87 | UR | 73 | 79 | | | N45 TM3 | 4L / TAA | М | 4,5 | 118 | _ | UR | 107 | _ | | | N45 AM1A | 4L / NA | М | 4,5 | 46 | _ | UR ¹ | 42 | _ | | | N45 SM1A | 4L / TC | М | 4,5 | 59 | 65 | UR ¹ | 53 | 59 | | | N45 SM2A | 4L / TC | М | 4,5 | 73 | _ | UR ¹ | 66 | _ | | | N45 TM1A | 4L / TAA | М | 4,5 | 85 | 95 | UR ¹ | 78 | 87 | | | N45 TM2A | 4L / TAA | М | 4,5 | 96 | 107 | UR ¹ | 88 | 98 | | | N45 SM1F | 4L / TC / I-EGR | М | 4,5 | 60 | _ | Stage IIIA | 55 | _ | | | N45 TE1F | 4L / TAA / I-EGR | ECR | 4,5 | 80 | _ | Stage IIIA | 73 | _ | | | N45 TE2F | 4L / TAA / I-EGR | ECR | 4,5 | 98 | _ | Stage IIIA | 89 | _ | | | N45 SM1X | 4L / TC / I-EGR | М | 4,5 | _ | 57 | Tier 3 | _ | 53 | | | N45 SM2X | 4L / TC / I-EGR | М | 4,5 | _ | 67 | Tier 3 | _ | 61 | | | N45 TM2X | 4L / TAA / I-EGR | М | 4,5 | _ | 95 | Tier 3 | _ | 87 | | ARRANGEMENT L In line AIR INTAKE NA Naturally Aspirated TAA Turbocharged Aftercooler TC Turbocharged EXHAUST SYSTEM I-EGR Internal Exhaust Gas Recirculation INJECTION SYSTEM M Mechanical ECR Electronic Common Rail UR Unregulated URI Previously EU Stage II | Δ. | cinditated
cinditated system | MIECTON STEEM | bistes the state of o | STANI
POWER OUT | | EMESTONS | PRIME POWER OUTPUT [kWm] | | |-------------|---------------------------------|---------------|--|--------------------|----------|-----------------|--------------------------|----------| | HODEL | A. H. Hand | MECL | District | 1500 RPM | 1800 RPM | EM. | 1500 RPM | 1800 RPM | | N67 SM1 | 6L / TC | М | 6,7 | 121 | 138 | UR | 110 | 125 | | N67 TM4 | 6L / TAA | М | 6,7 | 165 | _ | UR | 150 | | | N67 TM7 | 6L / TAA | М | 6,7 | 194 | _ | UR | 176 | _ | | N67 250kVA* | 6L / TAA | ECR | 6,7 | 234 | 246 | UR | 212 | 221 | | N67 TM2A | 6L / TAA | М | 6,7 | 126 | 141 | UR ¹ | 114 | 128 | | N67 TM3A | 6L / TAA | М | 6,7 | 152 | 165 | UR ¹ | 138 | 149 | | N67 TE2A | 6L / TAA | ECR | 6,7 | 193 | 215 | UR ¹ | 175 | 195 | | N67 TM1F | 6L / TAA / I-EGR | М | 6,7 | 125 | _ | Stage IIIA | 114 | - | | N67 TE1F | 6L / TAA / I-EGR | ECR | 6,7 | 145 | _ | Stage IIIA | 132 | _ | | N67 TE2F | 6L / TAA / I-EGR | ECR | 6,7 | 165 | _ | Stage IIIA | 150 | - | | N67 TE3F | 6L / TAA / I-EGR | ECR | 6,7 | 194 | _ | Stage IIIA | 175 | | | N67 TM1X | 6L / TAA / I-EGR | М | 6,7 | - | 141 | Tier 3 | _ | 128 | | N67 TE1X | 6L / TAA / I-EGR | ECR | 6,7 | _ | 165 | Tier 3 | _ | 150 | | N67 TE2X | 6L / TAA / I-EGR | ECR | 6,7 | - | 200 | Tier 3 | _ | 182 | ARRANGEMENT L In line AIR INTAKE NA Naturally Aspirated TAA Turbocharged Aftercooler TC Turbocharged EXHAUST SYSTEM I-EGR Internal Exhaust Gas Recirculation INJECTION SYSTEM M Mechanical ECR Electronic Common Rail UR Unregulated UR! Previously EU Stage II * Available from 2nd Half 2017 # Mechanical Engines – Features | PERFORMANCE | Class G2 of ISO 8528 standard certification of excellent performance related to load acceptance. | | | | | |----------------------------------|---|--|--|--|--| | INJECTION SYSTEM | Mechanical rotary pump, easy to maintain, is the core of the NEF mechanical engine series. The system, is based on direct fuel injection for accurate fuel delivery and is adaptive with standard and alternative fuels. The NEF mechanical injection system is the best trade-off between product cost effectiveness and performance. | | | | | | DUAL SPEED MODE | Possibility to switch from 1500 rpm to 1800 rpm (only one homologation engine rate). | | | | | | SPECIFIC FEATURES | Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Tier 3 and Stage IIIA performances achieved without external EGR or VGT. | | | | | | AIR HANDLING | NEF Series engines are available in naturally aspirated, turbocharged and turbocharged with aftercooler versions in order to reach the highest engine performance in terms of load acceptance & fuel consumption. These features allow final users to optimize their engine installation & final genset performance. | | | | | | up to 800h oil interval change | NEF Series adopts combustion chambers optimized to reduce oil dilution and are designed with an optimum engine design in terms of mechanical clearances, piston rings and engine oil system calculation. | | | | | | SERVICEABILITY & MAINTAINABILITY | Worldwide service network. Engines featured with a proven mechanical injection system without electronic interfaces and without external EGR. | | | | | | COMPONENT INTEGRATION | Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. | | | | | | ENGINE DESIGN | Balancer counterweights incorporated in crankshaft webs, rear gear train layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. | | | | | | OPTION LIST | Options for electronic speed governor; hot part guards, water jacket heater, alarm senders, oil drain systems, front radiator guard. | | | | | - ✓ EXCELLENT TRANSIENT LOAD RESPONSI FOR SEVERAL POWER GENERATION APPLICATIONS - ✓ RELIABLE AND COST EFFECTIVE SOLUTION, CONSISTENT WITH STANDARD AND ALTERNATIVE FUELS - **✓** ENGINE ADAPTABLE TO MARKET REQUEST - ✓ HIGH PERFORMANCE GUARANTEED IN ALL CONDITIONS - WITH THE SHORTEST LOAD RESPONSE TIME - REDUCED
MAINTENANCE NEEDS AND OPERATING COST - ✓ QUICK SERVICE SUPPORT AND EASY MAINTENANCE - ✓ LEAKAGE PREVENTION - ✓ VIBRATION AND NOISE REDUCTION ENGINE STRUCTURAL STIFFNESS - CUSTOMER ORIENTATION AND SPECIFIC ENGINE BASED ON APPLICATION TYPE # Electronic Engines – Features | PERFORMANCE | Class G ₃ of ISO 8 ₅ 28 standard certification of excellent performance related to load acceptance | | | | | |----------------------------------|--|--|--|--|--| | INJECTION SYSTEM | Accurate fuel delivery, provided by a very compact direct injection 2nd generation Common Rail @ 1.600 bar to achieve top performance in terms of load response and top power with the minimum fuel consumption. | | | | | | DUAL SPEED MODE | Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. | | | | | | SPECIFIC FEATURES | Lean layout; starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Demanding emissions performances achieved without external EGR or VGT. | | | | | | AIR HANDLING | NEF Series engines are available in naturally aspirated, turbocharged and turbocharged with aftercooler versions in order to reach highest engine performance in terms of load acceptance & fuel consumption. These features allow final users to optimize their engine installation & final genset performance. | | | | | | 600H OIL INTERVAL CHANGE | NEF Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. | | | | | | SERVICEABILITY & MAINTAINABILITY | Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. | | | | | | ENGINE DESIGN | Multiple injections, balancer counterweights incorporated in crankshaft webs, rear gear train layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. | | | | | | COMPONENT INTEGRATION | Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. | | | | | | OPTION LIST | Options for hot part guards, water jacket heater, alarm senders, oil drain systems, front radiator guard. | | | | | | | | | | | | - ✓ EXCELLENT TRANSIENT LOAD RESPONSI FOR SEVERAL POWER GENERATION APPLICATIONS - FLAT TORQUE AND HIGH ENGINE THERMODYNAMIC PERFORMANCE WITH LOW FUEL CONSUMPTION - ✓ ENGINE ADAPTABLE TO MARKET REQUEST - ✓ HIGH PERFORMANCE GUARANTEED IN ALL CONDITIONS - HIGH ENGINE POWER DENSITY WITH THE SHORTEST LOAD RESPONSE TIME - ✓ REDUCED MAINTENANCE NEEDS AND OPERATING COST - ✓ QUICK SERVICE SUPPORT AND EASY MAINTENANCE - VIBRATION & NOISE REDUCTION - I FAKAGE PREVENTION - CUSTOMER ORIENTATION AND SPECIFIC ENGINE BASED ON APPLICATION TYPE ## The Cursor Series If you are looking for top power, fast load response and high power density together with low fuel consumption, CURSOR Series is the best choice you can get. Characterized by outstanding performance, the CURSOR Series is dedicated to stationary applications from 195 to 490 kW. Superb performance is just one of the benefits of these engines: high reliability, long maintenance intervals, which means extremely low operating cost, are the core values of the range. | | Clare the Section | MECTONSTEP | DERECHEN | STANI
POWER OUT | | inistons | PRIME POWER OUTPUT [kWm] | | |-----------|-------------------|------------|----------|--------------------|----------|-------------------|--------------------------|----------| | MODEL | ARIK HAUST | MECH | DISTERS | 1500 RPM | 1800 RPM | EM1. | 1500 RPM | 1800 RPM | | C87 TE3 | 6L / TAA | ECR | 8,7 | 249 | 271 | UR | 229 | 249 | | C87 TE4 | 6L / TAA | ECR | 8,7 | 299 | 333 | UR | 275 | 306 | | C87 TE1D | 6L / TAA | ECR | 8,7 | 256 | 280 | UR¹/Tier 3 | 232 | 254 | | C87 TE1F | 6L / TAA | ECR | 8,7 | 195 | - | Stage IIIA | 177 | - | | C87 TE3F | 6L / TAA | ECR | 8,7 | 256 | _ | Stage IIIA | 232 | _ | | C87 TE4F* | 6L / TAA / I-EGR | ECR | 8,7 | 278 | 316 | Stage IIIA/Tier 3 | 250 | 284 | | C10 TE1D | 6L / TAA | EUI | 10,3 | 290 | 317 | UR¹/Tier 3 | 264 | 287 | | C10 TE1F | 6L / TAA / I-EGR | EUI | 10,3 | 290 | - | Stage IIIA | 263 | - | | CR13 TE6W | 6L / TAA | ECR | 12,9 | 414 | 454 | UR | 371 | 400 | | CR13 TE7W | 6L / TAA | ECR | 12,9 | 459 | 474 | UR | 425 | 428 | | C13 TE2A | 6L / TAA | EUI | 12,9 | 330 | 360 | UR ¹ | 300 | 327 | | C13 TE3A | 6L / TAA | EUI | 12,9 | 387 | 398 | UR ¹ | 352 | 360 | | C13 TE3X | 6L / TAA | EUI | 12,9 | _ | 371 | Tier 3 | _ | 337 | | C13 TE1F | 6L / TAA / I-EGR | EUI | 12,9 | 327 | _ | Stage IIIA | 296 | - | | C13 TE2F | 6L / TAA / I-EGR | EUI | 12,9 | 377 | _ | Stage IIIA | 342 | _ | | C13 TE2F | 6L / TAA / I-EGR | EUI | 12,9 | 377 | - | Stage IIIA | 342 | _ | | CR16 TE1W | 6L / TAA | ECR | 15,9 | 557 | 578 | UR | 505 | 523 | #### LEGEND ARRANGEMENT In line AIR INTAKE TAA Turbocharged Aftercooler EXHAUST SYSTEM I-EGR Internal Exhaust Gas Recirculation INJECTION SYSTEM ECR Electronic Common Rail EUI Electronic Unit Injector Unregulated Previously EU Stage II Available from 2nd Half 2017 ## Features | PERFORMANCE Class G3 of ISO 8528 standard certification of excellent performance related to load response. Accurate fuel delivery to achieve top performance in terms of load response and top power with low fuel consumption: - C87 with low fuel consumption: - C10 with electronic controlled unit injectors; - C10 with electronic controlled unit injectors and heavy duty Common Rail system. DUAL SPEED MODE Possibility to switch from 1500 rpm. User friendly thanks to interface card. SPECIFIC FEATURES Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. EMGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, front radiator guard. | | | |--|----------------------------------|--| | Accurate fuel delivery to achieve top performance in terms of load response and top power with low fuel consumption: - C87 with very compact 2nd generation Common Rail System; - C10 with electronic controlled unit injectors; - C13 with electronic controlled unit injectors and heavy duty Common Rail system. DUAL SPEED MODE Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. SPECIFIC FEATURES Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase
engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. | PERFORMANCE | | | with low fuel consumption: C87 with very compact 2nd generation Common Rail System; C10 with electronic controlled unit injectors; C13 with electronic controlled unit injectors and heavy duty Common Rail system. DUAL SPEED MODE Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. | | to load response. | | C87 with very compact 2nd generation Common Rail System; C10 with electronic controlled unit injectors; C13 with electronic controlled unit injectors and heavy duty Common Rail System. DUAL SPEED MODE Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. | INJECTION SYSTEM | , | | Cro with electronic controlled unit injectors; C13 with electronic controlled unit injectors and heavy duty Common Rail system. DUAL SPEED MODE Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. SPECIFIC FEATURES Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | | | DUAL SPEED MODE Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. | | , | | Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. SPECIFIC FEATURES Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | · | | Minimum cold starting temperature without auxiliaries down to -10°C (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. AIR HANDLING Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | · C13 with electronic controlled unit injectors and heavy duty Common Rail system. | | (with grid heater down to -25°). Most demanding emissions performance achieved without external EGR or VGT. Turbocharged with
air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Option LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | DUAL SPEED MODE | Possibility to switch from 1500 rpm to 1800 rpm. User friendly thanks to interface card. | | Most demanding emissions performance achieved without external EGR or VGT. Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | SPECIFIC FEATURES | | | Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | | | to increase engine efficiency thanks to the optimization of thermodynamic performance in terms of load response & fuel consumption. 600H OIL INTERVAL CHANGE CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | Most demanding emissions performance achieved without external EGR or VGT. | | in terms of load response & fuel consumption. CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | AIR HANDLING | Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder | | CURSOR Series adopts combustion chambers and high pressure injection system optimized to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | to increase engine efficiency thanks to the optimization of thermodynamic performance | | to reduce oil dilution. Optimum engine design in terms of mechanical clearances, piston rings and oil system calculation. SERVICEABILITY & MAINTAINABILITY Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. OPTION LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | in terms of load response & fuel consumption. | | piston rings and oil system calculation. Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. OPTION LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | 600H OIL INTERVAL CHANGE | CURSOR Series adopts combustion chambers and high pressure injection system optimized | | Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control & monitoring interfaces may be used for advanced real time diagnosis. Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. OPTION LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | to reduce oil dilution. Optimum engine design in terms of mechanical clearances, | | & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. OPTION LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | piston rings and oil system calculation. | | & monitoring interfaces may be used for advanced real time diagnosis. ENGINE DESIGN Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block.
COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. OPTION LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | SERVICEABILITY & MAINTAINABILITY | Worldwide service network. Engine ECU (Electronic Control Unit) with CAN-BUS control | | layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. OPTION LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | | | COMPONENT INTEGRATION Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. OPTION LIST Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | ENGINE DESIGN | Multiple injections, balancer counterweights incorporated in crankshaft webs, rear geartrain | | to high component integration. Water-oil cooler, oil and water pumps are completely integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | layout, camshaft in crankcase, suspended oil pan, ladder frame cylinder block. | | integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | COMPONENT INTEGRATION | Integrated CCV (Closed Crankcase Ventilation) system and engine design oriented | | integrated in the engine block. Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | to high component integration. Water-oil cooler, oil and water pumps are completely | | | | | | front radiator guard. | OPTION LIST | Options for hot part guards, water jacket heater, alarm senders, oil drain systems, | | | | front radiator guard. | | | | | ## Benefits - EXCELLENT TRANSIENT LOAD RESPONSI FOR SEVERAL POWER GENERATION APPLICATIONS - HIGH ENGINE THERMODYNAMIC PERFORMANCE WITH LOW FUEL CONSUMPTION - **✓** ENGINE ADAPTABLE TO MARKET REQUEST - HIGH PERFORMANCE GUARANTEED IN ALL CONDITIONS - ✓ HIGH ENGINE POWER DENSITY WITH THE SHORTEST LOAD RESPONSE TIME - ✓ REDUCED MAINTENANCE NEEDS AND OPERATING COST - ✓ QUICK SERVICE SUPPORT AND EASY MAINTENANCE - ✓ VIBRATION & NOISE REDUCTION ENGINE STRUCTURAL STIFFNESS - ✓ LEAKAGE PREVENTION - ✓ CUSTOMER ORIENTATION AND SPECIFIC ENGINE ARCHITECTURE BASED ON APPLICATION TYPE J2-36 FPT Industrial Power Generation offer includes open and soundproofed gensets, plant and after-sale services. The range of standard power sets covers the main applications, J2-39 such as emergency services and self-generation. J2-8 FPT Industrial engines line-up for Power Generation segment includes F₅, NEF, <u>105</u>–B and CURSOR series ranging from 30 to 500 kVA. Products portfolio includes an extreme-J2-10 ly wide offer of customized configurations. Power sets in containers are available to provide high kVA output used in emergency installations and to generate electricity for on-shore and off-shore petroleum or gas platforms. Low voltage distribution panels, specific shelters and resistances complete the product mix. A strong customer orientation allows FPT Industrial to satisfy peculiar requirements of contractors, such as Armed Forces, telephone operators and energy distributors, with products tailor-made and turnkey supplied. Environmental respect, top priority for FPT Industrial, finds in genset installations the perfect match with outstanding performance. J3-3 ## Open gensets from 30 to 500 kVA #### LEGEND | AIR | INTAKE | |-----|---------------------| | NA | Naturally Aspirated | | TC | Turbocharged | TAA Turbocharged Aftercooler #### INJECTION SYSTEM M Mechanical Injection ECR Electronic Common Rail EUI Electronic Unit Injector #### **GLOSSARY** #### PRIME POWE Maximum power available with varying loads for an unlimited number of hours. The average power output during a 24 h period of operation must not exceed 80% of the declared prime power between the prescribed maintenance in A 10% overload is permissible for 1 hour every 12 hours of operation. #### STAND-BY POWER Maximum power available for a period of 500 hours/year with a mean load factor of 90% of declared stand-by power. No kind of overload is allowable for this use. - 1. Performance according to ISO 8528 conditions. Power factor 0,8 - 2. Dry weight with standard accessories (may change depending on alternator type) - UR Unregulated - UR^I Previously EU Stage II - ** Available on 1st Half of 2017 - * Preliminary Data #### POWER kVA¹ | ٠. | 50 |) Hz | 60 | 60 Hz | | | |----------------|-------|----------|----------------------------|----------|--|--| | MODEL | PRIME | STAND-BY | PRIME | STAND-BY | | | | GE F3230MA | 30 | 33 | | _ | | | | GE F3240MA | 40 | 44 | _ | - | | | | GE F3250MA | 50 | 55 | _ | - | | | | GE NEF45MA | 45 | 50 | *
*
*
*
*
* | | | | | GENEF50M | 50 | 55 | _ | - | | | | GE NEF60MA | 60 | 66 | 66 | 73 | | | | GE NEF75MA | 75 | 82 | | | | | | GENEF80M | 80 | 88 | - | - | | | | GE NEF85MA | 85 | 94 | 100 | 110 | | | | GE NEF100MA | 100 | 110 | 110 | 121 | | | | GENEF120M | 120 | 132 | _ | - | | | | GENEF125M | 125 | 138 | 138 | 160 | | | | GENEF130MA | 130 | 143 | 145 | 160 | | | | GENEF160MA | 160 | 176 | 170 | 187 | | | | GENEF170M | 170 | 187 | _ | - | | | | GENEF200EA | 200 | 220 | 225 | 248 | | | | GENEF200M | 200 | 220 | _ | - | | | | GECURSOR250ED | 250 | 275 | 270 | 297 | | | | GECURSOR300ED | 300 | 330 | 330 | 363 | | | | GECURSOR350EA | 350 | 385 | 380 | 418 | | | | GECURSOR400EA | 400 | 440 | 420 | 462 | | | | GECURSOR500E** | 500* | 550* | 510* | 560* | | | | OPEN RANGE — 30 TO 500 kVA ENGINE SPECIFICATION | | | | | | DIMENSIONS (mm) | | | DRINEGHT' | |---|----------|----------------|------------------|------------------------|------------------|-----------------|-------|-------|-----------| | | G-DRIVE | CYL/AIR INTAKE | INJECTION SYSTEM | DISPLACEMENT
LITERS | EMISSIONS | L | w | Н | DETE | | | F32AM1A | 4L / NA | М | 3,2 | UR ¹ | 1833 | 730 | 1416 | 590 | | | F32SM1A | 4L / TC | М | 3,2 | UR ¹ | 1833 | 730 | 1416 | 635 | | | F32TM1A | 4L / TAA | М | 3,2 | UR ¹ | 1833 | 730 | 1416 | 730 | | | N45AM1A | 4L / NA | М | 4,5 | UR ¹ | 2300 | 730 | 1285 | 852 | | | N45AM2 | 4L / NA | М | 4,5 | UR | 2300 | 730 | 1285 | 1000 | | | N45SM1A | 4L / TC | М | 4,5 | UR ¹ | 2300 | 730 | 1322 | 886 | | | N45SM2A | 4L / TC | М | 4,5 | UR ¹ | 2300 | 730 | 1322 | 902 | | | N45SM3 | 4L / TC | М | 4,5 | UR | 2300 | 730 | 1475 | 1110 | | | N45TM1A | 4L / TAA | М | 4,5 | UR ¹ | 2300 | 730 | 1475 | 1130 | | | N45TM2A | 4L / TAA | М | 4,5 | UR ¹ | 2300 | 730 | 1475 | 1160 | | | N45TM3 | 4L / TAA | М | 4,5 | UR | 2300 | 730 | 1475 | 1110 | | | N67SM1 | 6L / TC | М | 6,7 | UR | 2800 | 780 | 1423 | 1300 | | | N67TM2A | 6L / TAA | М | 6,7 | UR ¹ | 2800 | 780 | 1423 | 1315 | | | N67TM3A | 6L / TAA | М | 6,7 | UR ¹ | 2800 | 780 | 1423 | 1440 | | | N67TM4 | 6L / TAA | М | 6,7 | UR | 2800 | 780 | 1423 | 1440 | | | N67TE2A | 6L / TAA | ECR | 6,7 | UR ¹ | 2800 | 780 | 1423 | 1570 | | | N67TM7 | 6L / TAA | М | 6,7 | UR | 2800 | 780 | 1423 | 1440 | | | C87TE1D | 6L / TAA | ECR | 8,7 | UR ¹ | 3020 | 1055 | 1690 | 1950 | | | C10TE1D | 6L / TAA | EUI | 10,3 | U R ¹ | 3530 | 1100 | 1730 | 2500 | | | C13TE2A | 6L / TAA | EUI | 12,9 | UR ¹ | 3530 | 1100 | 1730 | 2750 | | | C13TE3A | 6L / TAA | EUI | 12,9 | U R ¹ | 3530 | 1285 | 1820 | 2800 | | | CR13TE7W | 6L / TAA | ECR | 12,9 | UR | 3530* | 1286* | 1820* | 2800* | ## Features | RELIABILITY | · Compact layout · High quality level of components | |------------------------------|---| | CUSTOMIZATION | Manual or automatic control panel 3P or 4P circuit breaker availability Automatic Transfer Switch (available as option) | | MAINTENANCE & SERVICEABILITY | Best in class for oil and filters change intervals (600 hours) Easy access for maintenance operations | | ENVIRONMENTAL CARE | · Powered by low emissions engines | | FLEXIBILITY | · Integrated Fuel Tank (F5 series: 80 lt; NEF series: 180 lt; CURSOR series: 500 lt) | | AIR HANDLING | Turbocharged with air-to-air charge cooled air system with 4 valves per cylinder
to increase the engine efficiency by the optimization of thermodynamic performance
in terms of load response & fuel consumption. | | SAFETY | · Hot parts protection grids availability | ## Soundproofed gensets from 30 to 500 kVA #### POWER kVA¹ #### STANDARDS SOUNDPROOFED RANGE — 30 TO 500 kVA | _ | | | ENGINE SPECIFICATION | | | | | | | |-----------------|----------|------------------|----------------------|------------------|----------|----------------|------------------|--------------|-----------------| | MODEL | PRIME 50 | O Hz
STAND-BY | PRIME | O Hz
STAND-BY | G-DRIVE | CYL/AIR INTAKE | INJECTION SYSTEM | DISPLACEMENT | EMISSIONS | | GS F3230 | 30 | 33
33 | | JIAND-BI | F32AM1A | 4L/NA | M | 3,2 | UR ¹ | | GS F3240 | 40 | 44 | | | F32SM1A | 4L/NA
4L/TC | M | 3,2 | UR ¹ | | | | | _ | | | * * | | | | | GS NEF45 | 45 | 50 | _ | | N45AM1A | 4L/NA | M | 4,5 | UR ¹ | | GS NEF50-ne | 50 | 55 | _ | _ | N45AM2 | 4L/NA | M | 4,5 | UR | | GS NEF60 | 60 | 66 | 66 | 73 | N45SM1A | 4L/TC | M | 4,5 | UR ¹ | | GS NEF75 | 75 | 82 | _ | _ | N45SM2A | 4L/TC | М | 4,5 | UR ¹ | | GS NEF80-ne | 80 | 88 | 100 | 110 | N45SM3 | 4L/TC |
M | 4,5 | UR | | GS NEF85 | 85 | 94 | 100 | 110 | N45TM1A | 4L/TAA | М | 4,5 | UR ¹ | | GS NEF100 | 100 | 110 | 110 | 121 | N45TM2A | 4L/TAA | М | 4,5 | UR ¹ | | GS NEF120-ne | 120 | 132 | _ | _ | N45TM3 | 4L/TAA | М | 4,5 | UR | | GS NEF125-ne | 125 | 138 | 138 | 160 | N67SM1 | 6 L/TC | M | 6,7 | UR | | GS NEF130 | 130 | 143 | 143 | 160 | N67TM2A | 6L/TAA | M | 6,7 | UR ¹ | | GS NEF160 | 160 | 176 | 170 | 187 | N67TM3A | 6L/TAA | M | 6,7 | UR ¹ | | GS NEF170-ne | 170 | 187 | - | _ | N67TM4 | 6L/TAA | M | 6,7 | UR | | GS NEF200-ne | 200 | 220 | _ | - | N67TM7 | 6L/TAA | M | 6,7 | UR | | GS NEF200 | 200 | 220 | 225 | 248 | N67TE2A | 6L/TAA | ECR | 6,7 | UR ¹ | | GS CURSOR250-ne | 250 | 275 | 275 | 303 | C87TE3 | 6L/TAA | ECR | 8,7 | UR | | GS CURSOR250 | 250 | 275 | 270 | 297 | C87TE1D | 6L/TAA | ECR | 8,7 | UR ¹ | | GS CURSOR300-ne | 300 | 330 | 330 | 363 | C87TE4 | 6L/TAA | ECR | 8,7 | UR | | GS CURSOR300 | 300 | 330 | 330 | 363 | C10TE1D | 6L/TAA | EUI | 10,3 | UR ¹ | | GS CURSOR350 | 350 | 385 | 380 | 418 | C13TE2A | 6L/TAA | EUI | 12,9 | UR ¹ | | GS CURSOR400 | 400 | 440 | 420 | 462 | C13TE3A | 6L/TAA | EUI | 12,9 | UR ¹ | | GS CURSOR500-ne | 500 | 550 | 510 | 560 | CR13TE7W | 6L/TAA | ECR | 12,9 | UR | #### **LEGEND** | AIR IN | ITAKE | INJEC | TION SYSTEM | |--------|--------------------------|-------|--------------------------| | NA | Naturally Aspirated | M | Mechanical Injection | | TC | Turbocharged | ECR | Electronic Common Rail | | TAA | Turbocharged Aftercooler | EUI | Electronic Unit Injector | ^{1.} Performance according to ISO 8528 conditions. Power factor 0,8 JR Unregulated UR^I Previously EU Stage II #### **GLOSSARY** #### PRIME POWER Maximum power available with varying loads for an unlimited number of hours. The average power output during a 24 h period of operation must not exceed 80% of the declared prime power between the prescribed maintenance intervals and at standard environmental conditions. A 10% overload is permissible for 1 hour every 12 hours of operation. #### STAND-BY POWER Maximum power available for a period of 500 hours/year with a mean load factor of 90% of declared stand-by power. No kind of overload is allowable for this use. ## Features | TRANSPORTABILITY | Significant improvement in terms of maneuverability: thanks to dedicated slots in the lower part of the frame and lifting hooks on the top, it's possible to move the genset either by forklift or using a crane. The single lift hook, in rental version, contributes to further increase of handiness and safety transportation of the genset. | |-----------------------------------|--| | MAINTENANCE | Low maintenance needs and running costs are ensured by best-in-class oil change interval of up to 800h. All day maintenance requirements can be easily performed thanks to wide doors giving full access to the engine and other components. | | REFUELING OPERATIONS | Thanks to the external fuel tank filler cap, it has been ensured an easy way to fill up the fuel tank; available upon request is the possibility to refuel from an external fuel tank through by-pass fuel lines. The fuel tank is integrated in the sub-base and it is equipped with two level indicators: a visual type directly on the tank and an electrical one with info displayed on the control panel. | | VIBRATIONS
AND NOISE REDUCTION | Thanks to sound-absorbing fireproof panels, low noise levels are ensured and environmental impact is reduced; sound level is in line with market requirements (70dbA @ 7 m). Special anti-vibration supports anchor the genset to the base frame, minimizing vibrations and helping to reduce energy transfer to building structures and leading genset components to a longer life. | # MRS72 Manual Control Panel with Remote Start - Start up and shut down keys through an external signal; - Engine and alternator parameters monitoring - "Manual" and "Super-manual" operational modes; - Storage of last 250 events; - Multilingual diagnostic software (Italian, English, French and Spanish); - PC and/or on site (through optical key) programming; - Battery charger to ensure correct battery efficiency and command/control system alimentation (optional). ## AMF74 ### Automatic Control Panel - Automatic start up when the voltage of the main electrical network changes from a predefined value (programmable); - Automatic insertion as main source of electrical energy as the working parameters are reached; - Automatic disengagement once the nominal voltage of the main electrical network is reached; - Programmable slow shut down to allow the engine cooling gradually; - Engine and alternator parameters monitoring; - "Manual", "Automatic", "Test" and "Super-manual" operational modes; - Storage of last 250 events; - Multilingual diagnostic software (Italian, English, French and Spanish); - PC and/or on site (through optical key) programming; - Maintenance program indicating the routine maintenance to be performed; - Battery charger to ensure correct battery efficiency and command/control system alimentation (optional) # **2 I ENERGY** powered by FPT Industrial Located in France, at Fécamp, 2HE is an FPT Industrial company offering a wide range of tailored power generation solutions aimed to satisfy customers with specific needs, such as Armies, oil and gas companies, energy providers, nuclear power stations and hospitals. 2HE offer includes "turnkey" supply, engineering support, production and installation, together with assistance service and customer training. The company portfolio is enriched by special products like 400 Hz units for airport applications, gensets in con- tainers up to 6 MWatt, specific shelters, energy systems for off-shore installations, resistances and low voltage distribution panels (specifically designed for nautical and nuclear applications). Thanks to its proven expertise to manage complex project from blank sheet up to maintenance and service activity worldwide, 2HE is a reference in the highly specialized power generation segment. #### LEGEND Plant O R&D Plant + R&D All the pictures, drawings illustrations and descriptions contained in this brochure are based on product information available to FPT Industrial at the time of printing (31/01/2017). Some of the engine line-ups may refer to a specific market configuration which may not be present or offered for sale available in all other markets. The colors featured in this brochure may differ from the originals. FPT Industrial reserves the right to introduce any modifications, at any time and without any prior advance notice, to design, material, components equipment and/or technical specifications. Graphic Design STAR S.p.A. Italy FPT INDUSTRIAL S.p.A. Via Puglia 15, 10156 — Torino, Italy marketing1@fptindustrial.com www.fptindustrial.com